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Quantitative Connectomic Histology 

N Wang, PhD, RJ Anderson, PhD, A Badea, PhD, G Cofer, MS, Yi Qi, MD, GA Johnson, Ph.D 
Duke Center for In Vivo Microscopy 

Support: NIH 5P41EB015897, 1R01NS096720-01A1, K01 AG041211

The development of diffusion tensor imaging[1], tractography [2], and tract based structural 
connectomics has opened an extraordinary opportunity for exploration of neuroanatomy both 
clinically and in the basic sciences. We have become particularly excited about extending 
connectivity measurements from man to mouse (and rat). This talk will focus on the 
infrastructure, acquisition, reconstruction, post processing, and validation to make quantitative 
connectomic histology of the rodent brain routine and reliable.   

Extension of methodologies from man to mouse is seldom straightforward. The problem(s) for 
connectivity measures are particularly daunting. A recent Nature Communications article[3] 
authored by 78 of the world’s foremost experts in diffusion tractography concluded: 

1) “To date, the approach (diffusion tensor tractography) has not been systematically
validated in ground truth studies”

2) ” ...most state of the art algorithms produce tractograms containing 90% of the ground
truth bundles”

3) “However, the same tractograms contain many more invalid than valid bundles …”

Quantitative connectomics of the mouse brain must address the same issues encountered
clinically at 3000 X higher spatial resolution. Our approach was to start with a foundation study;
one that pushed the MR technology as far as possible in a fashion that would allow validation,
the missing link in the clinical domain. That work [4] acquired 131 images (120 angular samples) 
of two perfusion fixed mouse brains using b values of 4000 s/mm2. The total scan time for each 
specimen was 235 hours. We reasoned that a comprehensive data set was worth the effort 
even if it could only be done on a limited number of samples to understand what is possible with 
MR. That data was formatted so that it could be compared directly to the traditional fluorescent 
viral tracing studies, the gold standard performed by Oh et al [5] at the Allen Brain Atlas.

(B) ROC analysis of tractography accuracy
with ABA tracer data as ground truth. (C)
Mid-level (structure-level) comparison of
tractography-based connectivity with tracer-
based connectivity. Tractography-based
connectivity estimates are shown in red,
tracer-based estimates in green, and overlap
between the two in yellow. (D) Coarse
(parent-level) comparison similar to (C) but
collapsed into ontologically defined parent
structures. Parent structure abbreviations are
consistent with the ABA. (from [4])

A ten day scan is not a viable long term protocol. We pursued two paths of acceleration. The 
first was a systematic study of the foundation set, down sampling the number of angular 
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The connectome generated with a) 120 angles no k-space undersampling, b) 46 angles no k-
space undersampling, and c) 46 angles with 8X k-space undersampling. The correlation 
coefficient between a) and b) is 0.9712, between a) and c) is 0.9695.

Conclusion
Our protocol acquires 46 angles plus 5 baseline images at 45 um resolution [7]. Data is 

streamed during acquisition to a high-performance cluster for iterative reconstruction [6]. The 3D 
volumes are registered to the baseline images and passed to a final pipeline that calculates 
diffusion tensor prameters, tractography, and the connectome. A single acquisition can be 
completed in 11 hrs allowing us to acquire two complete data sets per day. The data are not 
identical to that generated by retroviral tracers. But the agreement is far better than that 
suggested for clinical studies. We speculate that this arises from the fact that the voxels in our 
data are 10,000 X smaller than those in the clinical domain leaving a comparably smaller 
collection of fibers to resolve and reduced tracking errors. The resulting protocol is our best 
effort for a higher throughput method for reliable population studies of connectomics in the 
mouse brain.
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samples. The second employed compressed sensing, a method which under samples k-space 
and reconstructs the images using a nonlinear reconstruction algorithm [6].
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Multi-modality and multi-level data integration through brain 
atlasing: Human Brain Project tools and strategies 

Jan G. BJAALIE

Institute of Basic Medical Sciences, University of Oslo, Norway

The Human Brain Project (HBP), an EU Flagship Initiative, is building an infrastructure that will 

allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal is to 

develop a unified multi-level understanding of the brain and its diseases, and to emulate the 

computational capabilities of the brain. 3D reference atlases of the brain, including the Waxholm 

Space atlas of the rat brain and the Allen Mouse Brain Atlas, are key components in this 

infrastructure. The project develops new solutions for integrating and analyzing data and models 

in the context of the reference atlases. Users have access to FAIR (Findable, Accessible, 

Interoperable, and Re-usable) data and models through the HBP Knowledge Graph. A multi-step 

curation process serves to make data and models FAIR. The infrastructure is delivered by the 

HBP Neuroinformatics platform, in collaboration with the HBP High-Performance and Analytics 

Computing Platform based at the main supercomputer centers in Europe. New tools and 

workflows are now being developed to facilitate atlas based data integration and analysis.
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Common Coordinate Frameworks in Animal Population Imaging 

Mike HAWRYLYCZ, Ph.D.

Investigator, Director of Modeling, Analysis, and Theory, Allen Institute for Brain Science

Building on BRAIN Initiative-funded pilot studies begun in 2014, the BRAIN Initiative Cell Census 

Network (BICCN) is creating a comprehensive 3-D common reference mouse brain cell atlas that 

integrates molecular, anatomical, and physiological properties of brain cell types.  Central to this 

effort is large scale cellular level profiling of the mouse brain including the development and 

extension of Common Coordinate Frameworks based on searchable digital atlases for data 

mapping, access, and navigation.  The Allen Mouse Common Coordinate Framework (CCF) is 

an essential tool to understand the structure and function of the mouse brain at molecular, 

cellular, system and behavioral levels. It has been successfully used for large scale data 

mapping, quantification, presentation, and analysis and has evolved through the creation of 

multiple versions. Version 3 (v3) of the CCF is based on a 3D 10μm isotropic, highly detailed 

population average of 1675 specimens. Currently, CCF v3 consists of 185 newly drawn 

structures in 3D: 123 subcortical structures, 41 fiber tracts (plus ventricular systems), and 21 

cortical regions including detailed primary visual and higher visual areas.  A key to the BICCN 

effort is to refine and extend the 3-D Allen Institute CCF for the mouse to enable external mapping 

of key single cell modalities in a 2D and 3D anatomic context for access and visualization at cell, 

and nuclei level. We survey these use cases and approaches and discuss image based mapping 

and navigation tools for cell location, context and ontology.
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The Boon and Bane of Animal Population Imaging - A Pharma 
Industry’s Perspective

Basil KUENNECKE

Translational Technologies for Neuroscience, Ophthalmology and Rare Diseases
Roche Pharma Research and Early Development, Roche Innovation Center Basel

F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland

Introduction
Population studies with large sample sizes are scientifically enticing because of their promise to 
help elucidate complex medical conditions that root in numerous minor, yet cumulative genetic 
liabilities and environmental influences. In many of these studies, imaging plays a pivotal role as 
a rich source of biomarkers for deep phenotyping. Whilst in the clinical realm this concept has 
been thriving, animal population imaging is still in its infancy for reasons that are manifold. 

Imaging readouts have become essential tools for decision taking in the drug discovery process. 
Magnetic resonance imaging (MRI) is particularly valued and extensively used for benchmarking 
and differentiation of novel drug candidates and evaluation of translational imaging biomarkers 
in later stages of in vivo testing, for initial proof-of-concept studies, and for characterisation of 
new animal models. In these settings, reliability, long-term stability and relevance of the readouts 
are of utmost importance and thus are bolstered with extensive method qualification. 
Pharmacological studies are generally performed in specific and well-defined animal models 
whose genetic backgrounds and environmental influences are painstakingly monitored to reduce 
variability and drifts as much as possible. Notably, animal population imaging akin to human 
population imaging is rarely, if at all, found in drug discovery. However, collections of many 
smaller-sized and focused studies are often at hand and may serve as a basis for what we dub 
“composite” animal population imaging. Here, we give a pharma industry’s perspective with focus 
on the contribution of MRI.

Methods
All animal studies reported herein were carried out with the ethical approval and according to the 
regulations of the Swiss Federal Food Safety and Veterinary Office. Data were acquired with a 
Bruker BioSpec 4.7T / 40cm or BioSpec 9.4T / 20cm MRI scanner. Composite population 
analyses encompass data of hundreds to several thousands of subjects accrued from studies 
carried out over several years. 

Results and Discussion
One of the opportunities arising from composite animal population imaging is the appraisal and 
comparison of animal models for complex disorders with the aim to elucidate a potential common 
underlying biological disease substrate. The challenges faced in this domain are best explained 
at the example of investigations carried out in a selection of etiologically diverse animal models 
for autism spectrum disorder (ASD)1,2. Such population studies are large-scale undertakings 
considering the number of models, group sizes and study repeats required for statistical 
validation that would call for a distributed approach such as a consortium effort. Cross-
institutional dissemination of digital data acquisition and processing procedures is of a lesser 
concern today and a protocol standardisation at this level can be achieved with limited effort. 
“Soft” factors related to animal handling, housing, timing, etc. however are difficult to capture and 
their influences are often underestimated and thus constitute major sources of unaccounted 
experimental variability. As an alternative, researchers have resorted to multiple-animal imaging 
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set-ups to increase the throughput of a single site by simultaneously acquiring data from several 
animals with one MRI scanner3. Whereas this parallel approach has been successfully applied 
to MRI morphometry, limitations are manifold for neurometabolic and neurofunctional readouts 
that require an accurate and constant timing for all subjects. For large-scale body composition 
analyses in the field of metabolic disorders we have resorted to yet another innovative approach. 
Spatial resolution, i.e. imaging, is traded in for the speed and physico-chemical selectivity of a 
whole-body relaxometric assessment of fat and lean mass. Notably, this modality doesn’t require 
anaesthesia and affords the least interference with the animals’ physiology, thus providing highly 
accurate and pharmacologically relevant data at a throughput of 30 animals per hour4.

Composite animal population imaging on control or vehicle treated subjects is a great resource 
of data for long-term quality assurance with regard to stability and reproducibility of readouts and 
the underlying experimental procedures. MRI quality parameters such as signal-to-noise and 
contrast-to-noise as well as main readouts are expected to remain stable over time on the 
premise that standardisation with standard operation procedures (SOPs) is in place and 
homogeneous animal populations are being used. Under these conditions, already small 
deviations that would remain unnoticed at the single animal or group level become apparent, 
even though in retrospect only. We have recently reported an unexpected finding obtained by 
perfusion-based functional MRI in Fischer 344 rats, i.e. an inbred line widely used as a model of 
high trait anxiety for testing drug efficacy. Under such seemingly highly standardised conditions 
the population separates into two distinct phenotypes with high and moderate basal neural 
activity in the medial prefrontal cortex, respectively5. Although the underlying cause has remained 
elusive the data suggest that anxiety-related circuitries are involved.

A third, very powerful application of composite animal population imaging is  found  in  
pharmacology. On the premise that stable conditions and readouts are maintained over many 
studies and extended periods of time as outlined before, drug treatment with different compounds 
and dose levels can be introduced as the driving variable. We have pioneered this approached 
in the field of pharmacological MRI (phMRI) of psychotropic compounds. Multivariate statistics 
on these data have revealed neural activity maps and key features of circuitry engagement for 
different drug classes and modes-of-action. Composite measures of the feature space, so-called 
gauges, have been established for antipsychotics, anxiolytics and antidepressants that now 
serve as a reference framework for benchmarking, positioning and differentiation of novel 
compounds with advanced pharmacology6.

Conclusions
To date, genuine animal population studies are scant as a consequence of the massive 
resourcing that would be required. High standardisation as imposed in the pharma discovery 
environment is, however, a propitious foundation for composite animal population imaging which 
is based on data garnered from collections of individual studies. Such population studies have 
provided unprecedented insight into subtle and complex biological processes and thus have 
informed and spurred the subsequent discovery efforts.
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Automating image processing with machine learning 

Anna KRESHUK

Heidelberg University / EMBL

Machine learning is advancing the state-of-the-art in computer vision more rapidly than ever 

before: for many problems in natural image processing automated methods are now approaching 

human parity. One of the major advantages of learning-based approaches is their general 

applicability: tailoring to a particular problem is performed by providing suitable training data, 

while the core of the algorithm remains unchanged. The results obtained by such a generic 

approach are often sufficiently good to only require minimal manual correction. I will address the 

problem of image segmentation and show, on examples from the nanoscale connectomics 

domain, how an image processing pipeline can be bootstrapped from sparse interactively 

provided user annotations to process Terabytes of volumetric image data.



Figure 1: Aligned NHP Nissl sections: (a) before deformable deformation, (b) final result, and (c) 
volume cuts at arbitrary angles, with brain silhouette (blue) and primary motor area (purple). 

Currently, SBA Composer supports the following file formats: 3d objects (X3D - xml-based 3d 
graphics), 2d images (JPEG, PNG, TIFF), data volumes (Nifti-1, ITK MetaImage, Freesurfer 
MGH/MGZ, NRRD Raw Raster Data), slice stacks (QuickNii, use case 2). It uses the x3dom library 
[2] as the graphics engine, with custom shaders for displaying volume cuts and overlays. Data
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SBA Composer: web-based software for exploring brain slices, 
volumes and surfaces in a 3d atlasing context 

Rembrandt BAKKER1,2, Anastasia OSOIANU1, Martin ØVSTHUS3, Trygve B. LEERGAARD3, Paul 
TIESINGA1

1. Neuroinformatics department, Radboud University, Nijmegen, the Netherlands.
2. Institute of Neuroscience and Medicine (INM-6), (IAS-6) and (JBI-1 /INM-10), Jülich Research

Centre, Jülich, Germany. 
3. Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway.

Fully automated analysis pipelines are important when vast quantities of data need to be processed. 
In such pipelines quality control is typically based on visual inspection by a human operator. We 
here present SBA Composer, a web-based tool optimized for visual inspection of image registration 
results and exploration of slice-based, volumetric and surface-based data in a 3d atlasing context. 
The tool, available from https://scalablebrainatlas.incf.org/composer, is an extension of the Scalable 
Brain Atlas [1], which provides web-based access to 30 brain atlases (MRI and parcellations) of 7 
different species. SBA Composer is at an early stage of development, and we here demonstrate its 
stable features on the basis of two use case examples.  

Use case 1: Aligning Macaque Nissl sections 

This use case takes coronal Nissl sections from the NIH Blueprint Non-Human Primate atlas 
[http://www.blueprintnhpatlas.org/], aligns the individual images to an MRI of the same individual, 
and co-registers the result to the Macaque atlas of Calabrese et al. [3]. The pipeline uses the 
POSSUM toolbox of Majka et al. [4] to carry out three steps: (1) pair-wise sequential alignment, (2) 
coarse-to-fine registration, and (3) deformable registration. 



Figure 2: ISH image, aligned with QuickNii, with (a) hippocampus (green) and hypothalamus (red),
(b) checkerboard overlay with T1-like data, and (c) original Allen Institute automated alignment.

Future development of SBA Composer includes (1) document format to save the state of the viewer 
and share it online; (2) integration with the HBP Morphology Viewer [7], to display neuronal 
reconstructions created in Neurolucida [MicroBrightField Inc.], and (3) integration with the Microdraw 
service [http://microdraw.pasteur.fr] to annotate datasets at microscopic resolution. 
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processing is done on the client, the size of images that can be loaded depends on the client's 
memory and GPU. Consequently, SBA Composer has very modest server requirements.  

Use case 2: Verifying the alignment of In Situ Hybridization image sections 

Coronal sections from in situ hybridization experiments in mouse were obtained from the Allen Brain 
Atlas data portal [http://www.brain-map.org/; 5] and re-aligned using QuickNii [6]. A QuickNii file 
reader was added to SBA Composer, which can be used to fine-tune the alignment. It has display 
modes (checkerboard, transparency) for overlaying slices with volumetric data. Imaging modalities 
from the atlas can be sliced at arbitrary angles. Voxel interpolation is done on the client GPU. 
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The electronic collection of vertebrate brains of the National 
Natural History Museum of Paris

Katja HEUER1,2, Melanie DIDIER3,4, Antoine BURGOS3,4, Stephanie ANASTACIO3,4, Marc 
HERBIN*5,6,  Mathieu SANTIN*3,4 and Roberto TORO*1,3

1Institut Pasteur 
2Max Planck Institute
3Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, 
Institut du cerveau et de la moelle épinière (ICM), F-75013 Paris, France
4Centre de Neuro-Imagerie de Recherche (CENIR), Paris, France
5National Natural History Museum of Paris
6CNRS 
*Authors contributed equally to this work.

Introduction
Understanding the evolution of the brain across species should allow us to better 

understand the sources of the normal and pathological variability in the human brain – a 
major challenge for neurosciences today. An analysis of neuroanatomical evolution and 
conservation should not only allow us to detect the traces of evolution in different brain 
systems and regions, it should also allow us to evaluate the degree of phenotypic 
conservation across species, providing a framework to better understand natural variability, 
and to distinguish it from pathological variability.

We have begun to constitute an open-access collection of high quality vertebrate 
brain MRI. We are currently scanning and processing the Vertebrate Brain Collection of the 
National Museum of Natural History, Paris, France. To date, more than 200 brains from 
different species have been scanned and will soon be made publicly available. Over the next 
five years, this digital collection should grow to > 1900 different specimen.

Methods & data
The specimens come from the collection of vertebrates of the National Museum of 

Natural History (MNHN) Paris – one of the oldest and largest collections of vertebrate brains 
in the world. This unique resource comprises almost 2,000 extracted brains and more than 
10,000 full specimens, ranging from lissencephalic small brains such as that of a tortue 
imbriquée to the large and tremendously folded brain of a Bottlenose dolphin.

High resolution MRI images have been acquired at the Center for Neuroimaging 
Research (CENIR) of the Institut du Cerveau et de la Moëlle Épinière (ICM, Paris, France) 
using either a 3T Siemens Tim Trio system, a Siemens Prisma or an 11.7T Bruker Biospec. 
Each dataset was acquired with a 3D gradient-echo sequence (FLASH). Parameters (Field 
of View, Matrix size, TR, TE) were adjusted so as to obtain the highest resolution possible 
with our scanner (from 100 to 450 μm isotropic). TR and TE were always chosen as 
minimum. Flip angle was fixed to 20° at 3T and 10° at 11.7T. The number of averages was 
chosen to maintain a scanning time below 12 hours. 



We created a special framework to present and share the data: The Brain Catalogue 
— a Web-based, interactive, virtual museum of the vertebrate brain and a platform for the 
collaborative study of brain anatomy (available at https://braincatalogue.org). The Brain 
Catalogue allows everyone to browse through high resolution MRI slices, explore available 
3D cortical reconstructions and learn about the diversity of vertebrate brains. The Brain 
Catalogue is at the same time a tool where citizen scientist can join and contribute to the 
segmentation of brains in our collection.

Conclusion
This is the first publicly available dataset which spans such a large variety of brains 

of different species. Our Web platform, the Brain Catalogue, should foster the reutilisation of 
the data by the research community as well as by citizen scientists.
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Results
Our first data release provides access to more than 30 brains, including in particular 

the brain of a Thylacine – a marsupial extinct in the early 20th century. As an example, the 
figure shows a Sloth bear brain, a leopard, a platypus and a thylacine brain and the 3D 
surface reconstructions.



i. A connectivity matrix approach, based on the computation of the number of fibers connecting a pair of
anatomical regions. For this step, we used a C57Bl6 mouse brain atlas inspired from (Calabrese et al. 2015)6

composed of 267 cortical as well as subcortical regions. A non-linear 3D registration procedure using ANTs
software5 was used to register the T2-weighted scan to the atlas using a diffeormorphic registration based on
Symmetric Normalization (SyN)7 with a mutual information similarity measure. Fig. 3 represents the average
as well as standard deviation connectivity matrices (dimensions: 267x267) on the twelve mice population –
each point representing the number of fibers connecting a pair of regions (roii, roij) of the atlas.

ii. An intra-subject fiber clustering approach. This method consists in the automatic clustering of individual
tractography fibers into fiber bundles for each mouse, without using a mouse brain atlas. After dividing the
fibers into 10 length groups (0-3/3-6/6-9/9-12/12-15/15-18/18-21/21-24/24-27/27-30 mm, fiber resampling
step=0.01), a 100 μm resolution parcellation volume based on a K-Means algorithm was calculated for each
range length (minimum parcel size of 27 voxels). A hierarchical clustering procedure based on the
computation of a connectivity matrix between these parcels was then performed for each range length to
retrieve clusters of parcels (minimum cluster size of 300 voxels, average cluster size of 3000 voxels,
connectivity matrix threshold of 1%). All fibers intersecting one same cluster by more than 60% of their length
were assigned to the same resulting bundle, leading to the final white matter bundles for each mouse.
Eventually, the centroid of each bundle was computed using the mean fiber approach (Fig.4).

Results: The diffusion data (Fig. 1) underwent deterministic regularized streamline tractography. Fig. 2a allows for a 
better understanding of the complex whole-brain white matter tractogram of Fig. 2b, with the characterization of the 
different fiber length computed. Fibers from 6 to 9 mm long represent the largest group in a C57Bl6 mouse brain. 
Measuring connectivity matrices also permits to disentangle the data by emphasizing the main pathways within the 
brain (Fig 3b). As expected, the corpus callosum (label 219) is strongly linked with the regions composing the cerebral 
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Towards a connectome atlas of the C57Bl6 mouse brain 
using ex vivo ultra-high field diffusion MRI

Ivy Uszynski1,2, Hervé Mathieu1,2,3,4, Jean-Christophe Deloulme1,2, Emmanuel L. Barbier1,2, and Cyril Poupon5

1GIN, Université Grenoble Alpes, Grenoble, France, 2INSERM U1216, Grenoble, France, 3Unité Mixte de Service IRMaGe, 
Grenoble Alpes Hospital, Grenoble, France, 4Unité Mixte de Service 3552, CNRS, Grenoble, France, 5NeuroSpin, CEA 

Saclay, Gif-sur-Yvette, France

Purpose: Diffusion MRI (dMRI) is a powerful tool to investigate the structural connectivity of the brain and to 
characterize its microstructure. Ultra-high field preclinical MRI systems are equipped with very strong gradients that 
allow to reach a much higher spatial and angular resolution in animal models, thus offering the possibility to segment 
white matter bundles in a similar way to what was achieved previously in humans. In this study, we propose to adapt 
the massive clustering approach of Guevara 1 to rodents in order to establish the foundations of a novel atlas of the 
structural connectivity of C57BI6 mice brains that will be validated against a histological ground truth. To this aim, 3D 
High Angular Resolution Diffusion Imaging (HARDI) was performed ex vivo on C57Bl6 mice brains and clusters of 
fibers were eventually computed using an automated procedure. 

Material and methods:
Acquisition Protocol - Experiments were performed on a 9.4T horizontal scanner (Bruker Biospec, AVIII-HD, Grenoble 
MRI facility IRMaGE) with a volume coil for excitation (86 mm inner diameter) and a 4-channel cryoprobe surface coil 
for reception. A 3D diffusion-weighted Pulsed Gradient Spin Echo echoplanar (EPI) sequence was implemented with 
the following parameters: 8-shots, TR/TE=640/26.0ms, diffusion gradients characteristics δ/∆ = 3.6/9.4 ms, 60 
diffusion directions with a b-value of 3000 s/mm² and 6 b=0s/mm² reference images, isotropic resolution of 100 μm, 2 
averages, total acquisition time of 18h. The computation of an active second order shim (performed on an ellipsoidal 
shim volume within the mouse brain) was performed beforehand to correct for magnetic field inhomogeneity. A 40-
minutes long 3D T2-weighted TurboRARE acquisition with the same field of view and resolution as the diffusion 
sequence was eventually performed for anatomical landmarks and registration purposes.

Animals - The MRI protocol was applied to twelve ex vivo C57Bl6 mice (6 females, 6 males, 9 – 11 weeks old). 
Following intracardiac perfusion (4% paraformaldehyde + Gd-DOTA), the animal was decapitated and the fixed head 
was imaged.

Post-processing -  The analysis of the data was performed using the Connectomist toolbox2. After correction for 
sources of artifacts (outliers, eddy currents, motion), an affine registration of the DW dataset to the anatomical T2-
weighted image using a mutual information similarity measure was performed. Orientation distribution functions 
(ODFs) were then computed using the analytical Q-ball model3 (spherical harmonics order 6, regularization factor 
0.006). A deterministic regularized streamline tractography4 was performed to infer a dense whole brain 
connectogram per animal (~3.200.000 connections) using the following parameters: uniform seeding over a 
predefined domain of propagation computed from the average b=0s/mm² reference image (8 seeds per voxel), 
forward step of 20 μm, aperture angle of 30°.  

Two approaches were then led to analyze the data: 



2. Duclap, D. et al., 2012. Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. In 29th ESMRMB. Lisbone, Portugal
3. Descoteaux, M. et al., 2007. Regularized, fast, and robust analytical Q-ball imaging. Magnetic Resonance in Medicine
4. Perrin, M. et al., 2005. Fiber tracking in q-ball fields using regularized particle trajectories. Proceedings of the Information Processing in Medical

Imaging conference
5. Avants, B.B. et al., 2012. A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration. NeuroImage
6. Calabrese, E. et al., 2015. A Diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cerebral

Cortex
7. Avants, B.B. et al., 2008. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and

neurodegenerative brain. Medical Image Analysis

Fig. 1: Anatomical T2-weighted axial and coronal 
views and corresponding color-coded FA maps for 
one C57Bl6 mouse. 

Fig. 2: (a) Average of the number of fibers found in each length interval (0-3/3-
6/6-9/9-12/12-15/15-18/18-21/21-24/24-27/27-30 mm or more) for the twelve
mice after deterministic regularized tractography (Mean ± SD). (b) Whole 
tractogram for one C57Bl6 mouse (~ 3.2x106 fibers). On this figure, color is not
related to fiber direction and is used for visualization purposes. 

Fig. 3 : (a) Selection of four axial slices of the mouse brain atlas 
composed of 267 regions. (b) Mean (left) and standard deviation 
(expressed in percentage of the mean) (right) connectivity matrices for 
twelve C57Bl6 mice. Each point of the matrices represents the number 
of fibers connecting two regions. The up-left corner – blue box – 
represents the regions of the cerebral cortex. Label 219 and 223-224 
respectively represent the corpus callosum and the cingulum (right and 
left parts). 

Fig. 4: Comparison of intra-subject fiber clustering results for 
three mice from a sagittal point of view. On this figure, color is
representative of a specific bundle. 
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cortex with a 65% standard deviation. Other regions show a much higher standard deviation, as for instance the 
cingulum region (labels 223-224). This can be related to its relatively small size: the cingulum represents less than 
0.1% of the atlas volume. Fig. 4 represents the centroids of the fiber bundles (mean fiber bundles) after computation 
of intra-subject fiber clustering for 3 typical mice. Each centroid represents in average 130 fibers regrouped in a 
bundle.  

Discussion: In this study, we show the successful measurement of ex vivo high-resolution whole-brain 3D diffusion in 
twelve C57Bl6 mice. The complexity of the atlas – with numerous small size regions (only 26 regions out of 267 
represent over half the volume of the atlas) – requires a perfect matching on the diffusion dataset to preserve a low 
standard deviation. The main perspective of this project is to compute inter-subject fiber clustering that will allow us to 
build the C57Bl6 mouse connectivity atlas itself. 

Acknowledgements Grenoble MRI facility IRMaGe was partly funded by the French program “Investissement d’Avenir” run by the 
‘Agence Nationale pour la Recherche’ ; grant 'Infrastructure d’avenir en Biologie Santé' – ANR-11-INBS-0006

References: 1. Guevara, P. et al., 2011. Robust clustering of massive tractography datasets. NeuroImage.
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Surface-based cortical parcellation and atlas creation of the 
sheep brain

Scott LOVE, Marine SIWIASZCZYK, Christophe DESTRIEUX, Frederic ANDERSSON, Elodie 
CHAILLOU

1PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France.
2UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.

The sheep model is a compelling yet underused model for understanding structure and function of 
the cortex. Neuroanatomical labelling facilitates the generalizability and comparability of 
experimental results across studies and laboratories. While brain-labelling atlases have largely 
focused on subcortical regions in sheep, very little information is available about the cortical 
parcellation. The current work aimed to use modified Freesurfer pipelines to produce a surface-
based labelling of the sheep cortex, facilitating neuroimaging investigations of this large-animal 
model.

The probabilistic surface-based labelling will be formed from high-resolution (0.6 mm3) T1-weighted 
MR images collected using a 3T Siemens Magnetom Verio. Twenty two-year old Ile de France ewes 
from the Experimental unit UEPAO-INRA (Nouzilly, France) were anesthetized and subjected to in 
vivo MRI imaging. The experiment was conducted at the platform CIRE in accord with French 
legislation and guidelines on experimental animal care.

A multi-atlas skull stripping procedure was created and used to remove non-brain tissue from the 
T1w images. Subcortical regions were then manually segmented and removed from the skull 
stripped images before using the Freesurfer software to produce cortical surface reconstructions. 
Major sulci and gyri were manually delineated on the inflated version of the cortical surface, which 
exposes the otherwise hidden sulci. Each region was assigned a colour and corresponding label in 
accord with nomenclature based on literature and veterinary terminology.

This project was performed with financial support from CIPhase, Inra and Region Centre 
(NeuroGéo) and with the help of Hans Adriaensen, Frédéric Elleboudt, Gilles Gomot, Christian 
Moussu and Luc Perrigouard from the platform CIRE.
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Construction of an MRI-Based Connectome for the Marmoset Brain: 
Methods and Initial Results 

Cecil Chern-Chyi YEN, Cirong LIU, Diego SCZUPAK, Madeline MARCELLE, Afonso SILVA 

National Institutes of Health 

Introduction 

The human connectome project (HCP) is the most successful multi-center collaboration 
efforts aimed at mapping neural connections of the human brain[1]. The success of the HCP may 
be attributed to having standardized MRI protocols that are optimized for instruments of various 
centers. A pilot version of the HCP-style protocol has been developed for 7T[2]. Ultra-high field MRI 
provides unprecedented spatial resolution and sensitivity, which can be combined to facilitate 
detection of finer and hidden brain connections. These brain networks obtained from healthy 
subjects build a solid baseline for comparative studies of patients with either acquired or congenital 
brain disorders. However, to investigate the etiology and treatments of such disorders, an animal 
model whose brain networks and gnome share a high degree of similarity to humans is desired. The 
common marmoset, a small New World primate, has shown to pose these two properties. In 
addition, germline transgenesis in marmosets opens the opportunity to create a non-human primate 
model of many congenital brain disorders[3]. Despite the enormous potential of the marmoset 
model, a population-averaged baseline of marmoset’s brain connections is still lacking. Our group is 
one of the pioneers in resting-state functional MRI (rfMRI) of awake marmosets[4]. The use of 
awake marmosets in functional imaging studies eliminate the confounds of general anesthesia, that 
hampers the detectability and interpretation of brain networks and increases data variability across 
multi-centers. Therefore, the aim of this study is to create a standardized MRI protocol for 
constructing the marmoset connectome, that will hopefully promote interinstitutional collaborations.  

Material and Methods 

All procedures were approved by the ACUC of the NINDS. Seven adult male marmosets 
(age: 2-7 years old) were acclimated to the body and head restraint inside a horizontal 7T/30cm 
MRI spectrometer (Bruker., Billerica, USA). Marmosets were laid in the sphinx position in the cradle, 
and their heads were comfortably immobilized by individualized 3D-printed helmet and chin-
piece[5]. Under sphinx position, marmoset’s body would be lower than its head and would not fit into 
9cm volume transmission coil normally came with 12cm gradient coil. Thus, a 15cm gradient coil 
(RRI., Billerica, USA) was used with an 11cm custom-built birdcage coil. A custom-built 10-element 
phased array RF coil was placed on top of the helmet. FLASH and RARE sequence was used to 
align three-orthogonal planes to the mid-sagittal plane and the line connecting anterior and posterior 
commissure. Anatomical MRI data was acquired using a RARE sequence from 38 coronal slices 
with 0.5 mm isotropic resolution. A pair of spin-echo EPI with opposite phase-encoding gradient 
were acquired for correction of the susceptibility-induced off-resonance field. rfMRI data were 
acquired using a single-shot gradient-echo EPI sequence. Four to six rfMRI scans with 512 
repetitions were performed in each session. MRI protocols and parameters can been found in figure 
1. Pre- and post-processing of the data were done using AFNI, FSL and ANTS, which can be 
incorporated into an unattended batch script and register to NIH’s marmoset brain atlas[6].



Results 

Study-specific anatomical MRI images show excellent image quality and tissue contrast. The 
slice thickness and number were deliberately kept the same as the rfMRI for easier importing 
geometry. The co-planar rfMRI images achieve good SNR (>20 for all images) and temporal 
stability. EPI distortion due to the susceptibility-induced off-resonance field was minimized using a 
pair of blip -up and -down EPI and FSL’s topup. Three major hubs (dlPFC, PCC, and PCRSC) of 
default mode network are observed in all seven marmosets (figure 2).

Discussion/Conclusion 

Our MRI protocol and processing pipeline of marmoset connectome follow the well-
considered HCP-style MRI protocol of 7T and its processing pipeline. Due to the difference in 
marmoset vs. human brain and pre-clinical vs. clinical MRI, exceptions and limitations are inevitable. 
First, the spatial resolution was determined to be 0.5mm isotropic, which was the best resolution 
achievable with acceptable SNR. Second, we chose the longest axis (anterior-posterior) as our 
frequency-encoding direction and left-right axis as our phase-encoding direction for parallel imaging. 
The slice-selection direction is along the shorter dorsal-ventral axis and hence limits multiband 
capability. Third, our TR is set to 2s due to the limitation of the gradient duty cycle without multiband 
acceleration. In conclusion, we developed an MRI protocol for imaging awake marmosets following 
the methodology of the HCP. Our MRI protocol and process pipeline can be easily adopted across 
centers currently interested in imaging the marmoset brain. We believe our standardized MRI 
protocol will encourage the development of global collaborations, and lead to a further utilization of 
the marmoset model in translational neuroscience studies. 

References 

The WU-Minn Human Connectome Project: an overview.
80
HCP Protocols

Generation of transgenic marmosets expressing genetically encoded calcium
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Large-scale brain networks in the awake, truly resting marmoset monkey.
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An embedded four-channel receive-only RF coil array for fMRI experiments of the

somatosensory pathway in conscious awake marmosets. 26
A digital 3D atlas of the marmoset brain based on multi-modal MRI.
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2. SisNcom

Since 2008, Paris Descartes, Paris Diderot and Paris Nord universities are building-up an 

interdisciplinary network called « imageries du Vivant ».around multiscale, multimodality 

interdisciplinary imaging research  

This network focuses on three main efforts : 

- Atlas IDV: A multiscale, multimodality interdisciplinary Linked Open Data sharing project

composed of different tools developed for sharing data, algorithms and software elements, creating

an image data base, with visualization, processing and crowdsourcing possibilities.

- New Imaging biomarker emergence and validation, coming from new modalities, new contrast

agents and/or methodological developments.
- Societal and ethical implications of imaging.

This network is composed of more than 30 research teams or facilities from Sorbonne Paris Cité

University distributed in Paris.

The Atlas-IDV is based on Cirrus, a 

USPC Big-Data facility, and more 

especially on the ‘Cloud-IDV’ 

supported by the Cumulus 

infrastructure (the U. Paris Descartes 

Cloud facility). The database is 

developed with a strong focus on 

interoperability, distributed 

architecture and standardization of 

metadata. Especially, an ontology-based dataset annotation standard is proposed, based on inputs 

from experts in a large number of image-based disciplines. To allow data and algorithm sharing, we  

use Virtual Machines (VM,150 Linux or Windowsalready  allocatedVM) owned by the scientists 

wanting to share data sets, computing environments or commercial license keys. Basically, 

scientists can get ‘software VM’ (where algorithms are shared to work on the data), ‘backup VM’, 
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Sharing research imaging data in « Imageries du Vivant ». 
An ongoing experience at Sorbonne Paris Cité University 

(SPC).



depicted in the general scheme below :This allows sharing of data, for imaging storage and 

processing, coming from MRI, echography, PET, optical imaging, EPRI equipments … with a 

common annotation basis to improve synergy and communicationbetween the different teams of 

the imaging community. 

This allows sharing of data, for imaging storage and processing, coming from MRI, echography, 

PET, optical imaging, EPRI equipments … with a common annotation basis to improve synergy 

and communicationbetween the different teams of the imaging community. 
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and ‘Database VM’, all shared with each other. The proposed VM templatesare available are pre-
equipped with a curated? set of imaging services and software elements.  

To allow data and algorithm sharing, we  use Virtual Machines (VM,150 Linux or Windowsalready  

allocatedVM) owned by the scientists wanting to share data sets, computing environments or 

commercial license keys. Basically, scientists can get ‘software VM’ (where algorithms are shared 

to work on the data), ‘backup VM’, and ‘Database VM’, all shared with each other. The proposed 

VM templatesare available are pre-equipped with a curated? set of imaging services and software 
elements.  

Our presentation will depict the tools developed on some trial sites for allowing data sharing, as 



Sammba-MRI: An imaging toolbox for small animal imaging by MRI
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Introduction 

Small mammals neuroimaging offers incredible opportunities to investigate structural and 
functional aspects of the brain. Many tools have been developed in the last decade to analyze 
small animal data, but current softwares are less mature than the available tools that process 
human brain data. The Python package sammba-MRI (SmAll MaMmals BrAin MRI in Python; 
http://sammba-mri.github.io) is designed to allow flexible and efficient use of existing methods and 
enables fluent scriptable analysis workflows, from DICOM conversion  to results visualization.

Material and Methods 

Sammba-MRI offers a toolbox to download reference neuroimaging datasets from different 
species of small animals. It provides end-to-end pipelines to process and analyze multimodal 
images, including structural, functional and perfusion MRI. 

Sammba-MRI allows to convert Bruker DICOM files to the standard Nifti-1 imaging format and 
extracts extensive information using DCMTK. It combines different neuroimaging tools leveraged 
through nipype [1] to perform spatial preprocessing steps: bias-field correction with ANTS, brain 
extraction with RATS [2, 3], EPI distortion correction and spatial registration with AFNI. Resting 
state fMRI (rsfMRI) connectivity analysis is handled through nilearn [4], while perfusion map 
estimation uses nonlinear fitting. Finally, brain images visualization is done with nilearn. 

Sammba-MRI provides practical examples to shows how to use the implemented methods. By 
relying on nipype interfaces, sammba-MRI is able to run an entire analysis in a single Python script. 
The package design facilitates data exploration: rerunning pipelines is optimized through caching 
mechanisms and long lasting steps are executed in parallel. 

Results 

We selected three examples that can be readily customized to various studies. 

Studying populations of animals gains precision by the use of cohort specific templates. Sammba-
MRI proposes an iterative method to create a fine anatomical template from individual structural 
MRI scans. We show in Figure 1 the published template [5] created from 34 mouse lemurs (15-60 
months old). The method adapts to different animal species. 

Estimating the cerebral blood flow (CBF) in animals is challenging due to the low SNR and lack of 
sensitivity. Sammba-MRI allows to estimate quantitative CBF maps for Bruker-FAIR EPI 
sequences. Figure 2 shows CBF map from a group of 10 mice (5-7 months old). 
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Resting state spatial networks extraction can be done using ICA. Using sammba-MRI, we 
performed ICA on a group of 15 mice (2-3 months old) from a public dataset [6]. Relevant bilateral 
regions are found even  without data post-processing  (Figures 3 and 4). 

Figure 1. Mouse lemurs 
template. 

Figure 2. Left to right : group average CBF map 
and individual regional CBF.  

Figure 3. ICA 
probabilistic maps. 

Figure 4. 
Bilateral ICA 
components. 

Discussion/Conclusion 

Hosted on the open GitHub platform, sammba-MRI further encourages inter-laboratory 
collaboration towards enhanced software quality and data-analysis protocols in the animal 
neuroimaging community. The researcher is provided with animal neuroimaging data and analysis 
tools. In this way, research discovery from animal imaging will be simplified and accelerated.
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• Control over the distribution and sharing of data
• Manages study meta-data and preclinical images using a specific ontology

o Pathology models, therapies, anaesthetics and physiological data
• Import of Bruker and DICOM file formats (additional formats will be supported to

comply with the evolution of the ecosystem)
• Secures online data sharing and data reuse
• Provides a storage of all research data in the cloud
• Original images + processing (code) + processed results
• Processes preclinical images on high performance systems, if required
• Support to integrate your data analysis pipeline and algorithms
• Enriches data with links using DOIs to Open Access, e.g. OpenAIRE

Currently FLI-IAM works on a new version of Shanoir called Shanoir-NG, with a completely 
new technological stack and architecture based on micro-services. We will detail the features 
of this new version and show how sharing of data and starting of pipelines work. 

 - #9

France Life Imaging (FLI) - Information Analysis and Management (IAM) 

Provider of data storage and processing solutions for preclinical imaging studies

Michael Kain, INRIA Rennes, Campus Universitaire de Beaulieu 
35042 Rennes Cedex – France and the FLI-IAM consortium 

Abstract 
Animal population imaging is a domain still in its infancy that requires a similar technical 
support as for human population imaging: technical solutions for storing and processing large 
volumes of data in a distributed scientific work environment. This challenge has been identified 
by the national French action FLI-IAM (https://portal.fli-iam.irisa.fr). IAM (Information Analysis 
and Management) is the computation science node of France Life Imaging (FLI). It provides 
access to multiple imaging databases and computation resources and takes care of the 
interoperability between databases1 and processing pipelines (local or cluster-based 
platforms). The preclinical work group within FLI-IAM has especially worked on a solution for 
hosting preclinical imaging studies, that is called Shanoir2 Small Animal. 

We will present the FLI-IAM architecture (fig. 1) and detail our Small Animal Shanoir (SAS) 
solution for hosting preclinical imaging studies (fig. 2, 3): data storage and processing 
execution and results integration via VIP3/Boutiques4. 

Shanoir Small Animal provides: 



Figure 1. Architecture overview of FLI-IAM 

Figure 2. Shanoir-NG Small Animal, snapshot of the management of an animal subject 
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Figure 3. Shanoir-NG Small Animal, snapshot of an examination 
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Development of a configurable workflow for processing 
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Introduction 
Available medical imaging data can be a highly valuable resource for research on diagnostics, 
epidemiology and drug development. This has also prompted increasing interest in the 
development of data driven models based on computational approaches and image processing 
algorithms. A common limitation to this process is dependent on the complexity of the processing, 
on the elevate number of 3D images to be processes and on the lack of common tools for sharing 
and processing medical images obtained by different imaging centres and/or acquired with 
different imaging instrumentations vendors. This can be explained in part by a lack of free access 
to medical imaging data for research, preventing the development of robust image processing 
methods and by the requested computational resources. As a consequence, successful analysis of 
imaging data in the medical context requires a multidisciplinary effort, integrating ad-hoc archiving 
platforms, providing these data in shared databases and developing optimized processing tools to 
extract a large number of quantitative features from digital images. 
Within this project we aim to develop tools for easily extracting, importing, archiving preclinical 
image data from several imaging device manufacturers and to implement tools for automated 
image processing. The herein developed workflow for preclinical images will be made available to 
the wide preclinical research community, hence allowing a simplified exchange and (re)use of 
image datasets between preclinical imaging centres. 

Materials and Methods 
Python-based tools, implementing Pydicom (a Python package for reading and manipulating 
DICOM files) have been developed for reading, importing and archiving preclinical images  This 
tool is intended to be embedded in the “Extensible Neuroimaging Archive Toolkit” (XNAT), an 
increasingly used open source platform for managing, exploring, and sharing neuroimaging data 
[2]. Since preclinical instrumentations usually do not match any specific standard regarding data 
storage and each vendor adopts a proprietary format for its data, we developed python-based tools 
for converting raw images coming from several vendors (to date: MRI Bruker and Aspect Imaging) 
to DICOM format.   

The workflow is based on the following steps (Figure 1): 
1. an archiving/searching/retrieving step for merging and collecting multiple image datasets

coming from several modalities;
2. a Bruker/Aspect to DICOM format converter to upload images to XNAT;
3. an image processing step producing parametric images related to biological aspects;
4. an intermediate image processing step to extract features related to both raw and parametric

images.
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Results 
We have developed python-based tools for (i) accessing to image raw data stored in MRI 
preclinical scanners, (ii) sorting the parameters of the native image format into a Python dictionary, 
(iii) converting raw binary images into DICOM format and iv) storing the meaningful information into
the DICOM header (tags) and image set field (Figure 2). XNAT pipelines have been implemented
to load large datasets of data arising from several studies/patients/sessions into DICOM images by
preserving a meaningful tree-like structure (Figure 3).

Conclusions 
An easy-to-use, adaptable and implementable workflow has been developed to load raw images 
arising from preclinical imaging centers into a XNAT-based archive system. The advantage of this 
approach relies in the capability to operate with several imaging modalities and in the capability to 
easily apply different image processing analysis procedures to the same datasets.  
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2007, 5, 11–33

FFigure 11: Schematic workflow for image archiving and processing 

Figure 2. Screenshot with DICOM metadata extracted from raw images (left) 
Figure 3. Corresponding XNAT loaded preclinical images stored (right). 
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Introduction: Resting-state functional magnetic resonance imaging (rs-fMRI) has brought 
considerable understanding onto the nature of the brain organization and function, and remains, to 
date, a central method in neuroimaging. Functional connectivity (FC) estimated in the mouse brain 
using rs-fMRI is a fast-developing field holding the exciting promise to uncover the basic principles 
of large-scale functional organization, as well as the mechanisms leading to their alterations under 
pathological conditions (for review see [1-4]). Since its formal onset in 2011 [5], the method has 
been adopted by several laboratories world-wide. Similar to functional imaging acquired in human, 
acquisitions in rodents are carried at varying field strengths, coil configurations, and sequences. In 
addition, differences in animal handling procedures may further impact results, preventing a 
comparison of published results between laboratories, and complicating the establishment of
standardized methods for preclinical imagers. We have carried out a multi-centre comparison of 12 
datasets representative of the protocols obtained in the respective laboratories using a common 
data analysis pipeline. Specifically, we aim to investigate the reproducibility of murine functional 
networks across centres.

Material and Methods: 12 datasets consisting of 15 individual rs-fMRI scans were acquired with 
gradient-echo echo planar imaging (EPI). Scans were acquired on dedicated Bruker magnets 
operating at 4.7T (N=1 dataset), 7T (N=4), 9.4T (N=6), 11.7T (N=1), with either room-temperature 
coils (N=5) or cryocoils (N=7). All acquisitions were performed on anesthetized C57B6/J mice (both 
male and female) with either isoflurane 1-1.2% (N=4), halothane 0.75% (N=1), medetomidine 0.1-
0.4 mg/kg bolus and 0.2-0.8 mg/kg/h infusion (N=2), or a combination of isoflurane 0.2-0.5% and 
medetomidine 0.05-0.3mg/kg bolus and 0-0.1 mg/kg/h infusion (N=5). Animals were either freely-
breathing (N=7) or mechanically ventilated (N=5). All data was pre-processed using an adapted 
pipeline based on FSL FEAT [6]. A number of denoising approaches were compared; results are 
shown following vascular and ventricular signal regression. FC data analysis was performed using 
several commonly used approaches: seed-based analysis (SBA), independent component analysis, 
and ROI-based network analysis. Detailed results in this abstract are provided for SBA. Statistical 
FC maps across datasets were obtained with permutation-based one-sample t-tests using cluster 
correction. Within-dataset statistical FC maps were obtained with parametric one-sample t-tests and 
are reported as significance incidence (p<0.05, uncorrected) across datasets. 

Results: Individual scans displayed minimal geometric distortions. Cortical signal-to-noise ratio 
(SNR) ranged from 29.7±2.7 to 298.9±34.6. There was a positive association between field strength 
and SNR (p=1.7x10-8), and between coil type (room-temperature or cryocoil) and SNR (p=0.0061). 
Maximal motion in most scans was kept below 10% of the voxel dimension. Seeds positioned in 
representative anatomical regions of the left hemisphere revealed the spatial extent of murine
resting-state networks, indicating a bilateral organisation (Insular area, motor area, hippocampus, 
striatum, thalamus seeds), as well as a rostro-caudal organisation together with bilateral posterior 
parietal cortical regions when an anterior cingulate seed was used. This latter network recapitulates 
anatomical features reminiscent of the human default-mode network (Fig. 1)[7]. Considered 
individually, 60-80% of the datasets presented significant contralateral FC for the insular seed. FC 
reproducibility for to the anterior cingulate seed presented lower incidence, ranging between 40-
60%, in distal posterior parietal cortical areas. 

Individual FC values were extracted either from a contralateral region-of-interest (ROI) for the 
insular seed or a ROI located in the retrosplenial area for the anterior cingulate seed. These FC 
data were further investigated in depth within a linear model approach including factors related to 
equipment, acquisition, and animal handling. In both ROIs, anaesthesia was identified as a 
significant explanatory factor (p= 1.3e-5 for insular area, p= 1.0e-7 for retrosplenial area). 
Mechanical ventilation presented a strong effect on FC with respect to the cingulate seed (p= 2.5e-5
for retrosplenial area, p= 0.12, for insular area). Finally, SNR, used as a proxy of field strength X coil 
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setup X sequence interactions, only reached significance effect on the FC for the insular area (p=
2.4e-13) but not in the retrosplenial ROI (p= 0.28).

Discussion: Representative datasets from imaging centres world-wide revealed robustness and 
spatial extent of commonly investigated functional networks in the mouse brain. With the growing 
body of literature regarding FC in mice, this study allows a crucial comparison of datasets to 
investigate the basis of FC in the healthy and diseased brain. While the spatial extents of resting-
state networks converged, divergences remained in long-range rostro-caudal connectivity, 
encompassing regions associated with the rodent default-mode network. Careful protocol planning 
and comparisons with the standards established in this study will serve as a key reference for rs-
fMRI mapping in the mouse, and will guide the future design of more robust protocols.  

References: (1).Jonckers, E., et al., Front Pharmacol, 2015. 6: p. 231. (2).Pan, W.J., et al., Front 
Neurosci, 2015. 9: p. 269. (3).Gozzi, A. and A.J. Schwarz, Neuroimage, 2016. 127: p. 496-509.
(4).Chuang, K.H. and F.A. Nasrallah, Neuroimage, 2017. (5).Jonckers, E., et al.,. PLoS One, 2011. 
6(4): p. e18876. (6).Zerbi, V., et al., Neuroimage, 2015. 123: p. 11-21. (7).Sforazzini, F., et al., 
Neuroimage, 2014. 87: p. 403-15.

Figure 1 | Seed-based resting-state networks for 6 representative seeds shown as one-sample t-
statistics (p<0.05, cluster-corrected, left) and reproducibility between datasets shown as incidence 
maps (right).  Mouse resting-state FC maps presented a robust homotopic extension with respect to 
the strong bilateral organization for most seeds, except for the anterior cingulate cortical seed, 
which also displayed a stronger rostro-caudal organisation. The spatial extent reproducibility of 
these maps ranged between 60-80% contralateral to the majority of seeds, and 40-60% along the 
rostro-caudal axis for the anterior cingulate seed.   
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Introduction In vivo T1 and T2 relaxation times are tissue dependent and their modifications may be 
characteristic of specific anatomical regions and pathological situations. The aim of this project was to produce 
quantitative 3D T1 and T2 maps for the healthy rat brain that can eventually be used as normative references. 
Such maps were defined based on data acquired at two different centers GIN and CRMBM with three different 
image processing pipelines. We report on the differences obtained and discuss the feasibility of running multi-
center preclinical studies.  
Methods  
Animals. Ten Sprague Dawley (5-6 weeks old) were used in each center GIN and CRMBM (different animal at 
GIN and at CRMBM). For reproducibility testing, the rats were imaged twice at GIN (referred as GIN & GIN_2; 
delay: 1 month). The rats were anaesthetized with 2% isoflurane.  They were spontaneously breathing 
throughout the entire experiment. Breath rate was monitored using a pressure sensor and a monitoring unit. 
Body temperature was monitored with a rectal probe and maintained in the normal range using a heated blanket. 
All procedures were approved by a local ethical review committee.  
MRI. All the images were acquired using a 7 T horizontal scanners (Bruker Biospin, Ettlingen, Germany) in the 
two centers. Radiofrequency (RF) transmission was done with a volume coil (diameter: 72 mm). A circular 
receiver surface coil (diameter: 24 mm) was placed above the dorso-caudal part of the brain. For T1 mapping, 
a MP-RAGE sequence was used with eight inversion times (TI) (150, 247, 408, 674, 1112, 1838, 3030, and 
5000 ms). Those values were chosen so that they were equally distributed along the y-axis of an exponential 
curve. For T2 mapping, a MSME sequence was used with 28 echo times (from 8 to 224 ms), TR=600 ms, FOV 
was 2.7x2.7x2.8 cm3 and spatial resolution 211x211x424 μm3 (acquisition matrix 128x128x66).  
Data Analysis. All individual data were first realigned (rigid body transformation) using SPM12. As SPM was 
initially developed for Human, the images were firstly rescaled by a multiplicative factor of 10. Using one T1-
weighted image, SPM12 tissues segmentation was performed and brain extracted for each animal. The image 
was then parceled using a multi-atlas approach (1). Using two formal expressions of pixel intensity, depending 
on TI or TE, a non-linear fitting function provided T1 or T2 maps (2,3). Three fitting pipelines developed 
independently by each partner (GIN, CRMBM and MIRCEN) were tested. No information was exchanged 
about the pipelines, which relied respectively on Matlab, ImageJ and BrainVISA functions, and were considered 
as “black boxes”. Each center provided its own pipeline. For each center and each pipeline, T1 and T2 values 
in each voxel were averaged across each parcel and each animal. All data were stored on Shanoir_SA, a platform 
for sharing neuroimaging data. Image processing pipelines were embedded into Docker containers and executed 
on the VIP processing platform. 
Results  
Figure 1 shows the different T1 values for each center, CRMBM and GIN, computed with the three pipelines. 
No differences between GIN and CRMBM pipelines results were observed (p>0.84). MIRCEN provided lower 
values (200 ms less). Regarding reproducibility, GIN_2 results tended to be lower for all pipelines (p<0.002) 
but the MIRCEN pipeline. For T2 values, regardless of the data origin, all pipelines computed similar values). 
Here, measurement reproducibility was ensured (no difference between GIN and GIN_2 differences, p>0.92). 
Major results are summarized in the T1 vs T2 plot (Figure 2). T1 and T2 values are grouped for each data center 
(low intra-center variability). T1 values computed using the MIRCEN pipeline are clearly lower than those 
computed with GIN or CRMBM pipelines, while T2 values were comparable for all pipelines for the two data 
providers, with lower values for CRMBM compared to GIN. Intra-center reproducibility (GIN) was better for 
T2 than for T1 values. The comparison with the literature (4,5,6,7) indicates a good correspondence for all 
regions for T2 values and T1 values computed with GIN or CRMBM pipelines, except Amygdala and 
Hippocampus. 
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Discussion 
This work investigates the influence of data acquisition centers (n=2) and image processing pipelines (n=3) on 
the production of  T1 and T2 brain maps. It demonstrates the coherence of the final computed maps when the 
acquisition sequence parameters are optimized and harmonized between centers. Additional investigations 
should be performed to understand the differences obtained for T1 values with one of the pipelines (MIRCEN). 
The inter-individual intra-center results are similar in average for T1 and T2 values. Correlation of mean values 
in the ROIs between centers is very good for T1 (r²>0.9) with an almost linear relation (factor of 1.1), and good 
for T2 (r² >0.78, factor by 1.8). The poor reproducibility for T1 values in one of the centers (GIN) is certainly 
due to physiological changes (weight and age) in the animals between the scanning sessions. This study 
demonstrates the feasibility of pooling animal data from different centers and the use of a distributed computing 
architecture for image storage and processing pipeline execution, paving the way for multi-center preclinical 
studies.  
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Figure 1: T1 values. Left: T1 values computed by three pipelines on data from two centers CRMBM and GIN 
on ten rats. Rats were imaged twice at GIN (GIN, GIN_2). Right: T1 values in different brain regions using the 
CRMBM pipeline for CRMBM data. Light green color indicates the number of voxels (corresponding y-axis at 
right) considered in each case. 

Figure 2: T2 vs T1. Values computed from three pipelines (‘+’ for GIN, ‘°’ for CRMBM, ‘x’ for MIRCEN) for 
the data acquired in two centers (GIN in blue, CRMBM in red). The second session at GIN is shown in green. 
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Purpose: Brain plasticity is usually associated with microstructural changes, but it can also 
reflect a large macroscopic rewiring of the brain called long-distance plasticity (LDP). LDP was 
first described in humans with dysgenesis of the corpus callosum (dCC), a brain malformation in 
which some or all callosal fibers fail to find their natural tracts and end up forming completely 
new paths1. So far, little is known about the detailed anatomical and temporal pattern of the 
development of those connections and, to date, no animal model could reproduce the full 
complexity of brain connectivity in this pathology. In the present study, we used ultra-high field 
diffusion-weighted MRI to map the underlying formation of white-matter fiber tracts in a long-
known murine model of dCC, the Balb/c mouse. 

Methods: 81 Balb/c mice were scanned in vivo in a diagnostic sequence in a Varian 7T scanner 
with the following parameters: TR/TE 2500:27 ms; matrix 128 x 128; FOV 23 x 23 mm; slice 
thickness: 0,25mm; no gap; 8 averages in sagittal plane. The CC area was measured in Balb/c 
and C57bl6 data2 on the midline on imageJ program using a freehand drawing tool.Eight adult 
Balb/c mice (4 females and 4 males) were scanned for DWI following preparation2 in a 14T
vertical bore Bruker with a 15mm coil  3-D spin-echo EPI images were acquired using the 
following parameters: TR/TE = 450/21ms, δ/Δ = 3/7.5 ms, field of view = 12.80 x 10.24 x 6.40
mm3, matrix = 160 x 128 x 80 yielding an isotropic resolution of 80μm, averages = 2, 232 
directions split in three shells of 39, 77 and 116 directions, b-values = 1500, 3000, 6000 s/mm2

with 4 b0 images. For probabilistic tractography on mrtrix, ROIs were manually drawn in both 
hemispheres at the frontal portion of the corpus callosum (CC) (or at the frontal portion of the 
Probst bundle in case of dCC), the posterior portion of the cortex at the level of mid 
hippocampus, at the entire CC (or remnant in case of dCC) and at the hippocampal commissure 
(HC).

Results: In the cohort of 81 animals, we detected a larger variance of the CC of Balb/c (Fig. 1A) 
compared to C57bl6 data2. To better understand these findings, we investigated the whole 
callosal network of 8 animals. For this, we utilized diffusion-weighted MRI and tractography 
driven by manually-drawn ROI seeds in the corpus callosum (or the callosal remnant in dCC 
animals). We found that 4/8 animals presented abnormalities of the CC in an anatomical (b0) 
image, and that all 8 animals showed abnormalities in the DWI scans. Examples of these 
abnormalities can be seen in the connectivity of the interhemispheric network, which shows one 
animal with apparently normotypic cortico-cortical connections (Fig. 1B), together with another 
animal that presented only a “narrow bridge” juxtaposed to the HC (Fig. 1C). Figure 1 also 
shows altered frontal interhemispheric connections of the Balb/c mouse. In one animal, this 
connection crosses the midline through the genu (Fig. 1D), while in another, the frontal fibers 
continue in an anteroposterior orientation and only cross the callosal remnant at the HC level 
(Fig. 1E). Another anomalous connectivity found in these mice (Figs. 1F and G) was the sigmoid 
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bundle, an anomalous heterotopic bundle that connects the frontal cortex with posterior 
contralateral cortex, and which has been thus far only described in humans 1.  

Figure 1. A. Graph showing the greater variability of the size of the CC in Balb/c as compared 
with controls, in sagittal view. B-G. Tractography of the global callosal network: frontal 
connectivity of a Balb/c mouse with a normal sized CC (B and D) compared to a dCC mouse (C
and E). F and G. Tractography of the sigmoid bundles of a dCC animal. 

Conclusion: Diffusion-weighted MRI allowed to observe, in the Balb/c strain, some of the 
aberrant connections seen in humans with dCC. This set of results allows us to reinforce 
previous proposals4 to consider the Balb/c strain as an appropriate translational animal model to 
study LDP. Using this model, it may be possible to perform detailed investigations of the genetic 
and molecular underlying mechanisms of aberrant white-matter tract formation in the brain, and 
to combine developmental studies with morphological and functional imaging approaches aimed 
at understanding and mitigating the consequences dCC in human patients. 
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Introduction. Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of 
dopaminergic neurons. Sensory disorders are associated with PD and appear a long time before the onset of 
the well-known motor symptoms. A recent electrophysiological study in a PD rat model [1] has revealed the 
dysfunction of the Superior Colliculus (SC), a retinotopic structure of the midbrain involved in vision [2]. We 
explored with fMRI the response to light stimulus frequency of primary visual structures (SC, lateral 
geniculate nucleus LGN, and primary cortical area V1) in a rat model of PD. Activation of SC was 
exacerbated at low frequency (0.5-5%)  and rapidly saturated compared to controls. These results confirm the 
possible role of SC as an early biomarker of the disease. 

Methods. Animals. Eight Long Evans (LG) rats (Controls) and six parkinson rat (PD) models (LG with an 
intracerebral injection of 6-hydroxydopamine) were anesthetized with a intramuscular injection of 
Medetomidine 0.5ml/kg (Domitor, Pfizer). There were no difference in age and weight between the two 
groups (6±1 weeks, 320g±12). Rats were spontaneously breathing throughout the entire experiment. 
Breathing rate and SaO2 were monitored using BioPac and MouseOx systems respectively. Body temperature 
was monitored with a rectal probe and maintained in the normal range using a heated blanket. All procedures 
were approved by a local ethical review committee. Before a second imaging session, PD treatment (LDopa, 
0.1ml/kg) was administred to both groups. 
MRI. All the images were acquired using a 9.4 T horizontal scanner (Brüker). Radiofrequency (RF) 
transmission was done with a Helmholtz coil (diam: 50 mm). A circular receiver surface coil (diam: 24 mm) 
was placed above the dorsocaudal part of the brain. Functional images consisted in a T2*-weighted sequence 
(TE/TR/flip angle=20 ms/2s/90°, matrix size=64 x 64, FOV=30x30mm, in-plane resolution=0.469 x 0.469 
mm2 , slice thickness=1 mm). The T2-weighted Turbo Rare structural image comprised fifty coronal slices 
(TE/TR/flip angle=36ms/5.7s/90°, echo-spacing=8ms, Rare factor=8, average=6, matrix size= 256 x 256, 
FOV=30x30, in-plane resolution=0.117 x 0.117 mm2, slice thickness=0.5 mm).  
Stimulus and visual stimulation. To modulate the functional SC activity the block visual paradigm consisted in 
monocular 5ms light flashes emitted by a blue LED (450 nm, 100cd/m2). Each fMRI run was composed of 10 
stimulation blocks, 12s each, alternating with a 20s rest period. In each block the light stimulus frequency was 
kept constant. Five different frequencies were used 1Hz, 3hz, 5Hz, 8Hz and 10Hz in a first experiment (Exp1, 
4 controls and 4 PD)  and 0.5Hz, 1Hz, 2hz, 3Hz and 5Hz in a second experiment (Exp2, 4 controls and 2 PD). 
Frequencies were randomly presented in 14 fMRI separate runs for each animal leading to 28 events of each 
frequency type. A jitter was introduced to avoid synchronization between image acquisition and visual 
stimulation. All aspects of stimulus delivery were controlled via an home-made software controller. The 
monocular visual stimulation was transmitted via an optic fiber to the left eye of the rat.  
Data Analysis. All data were processed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm). As SPM was 
initially developed for Human, the images were firstly rescaled by a 10 multiplicative factor. Then, functional 
images were realigned (rigid body transformation) to correct for possible head movements to the first image 
acquired after the structural image used as the reference and a mean functional volume was computed. After 
realignment to the functional mean, the structural image was non-linearly deformed to fit an home-made atlas. 
The computed individual deformation field was applied to all corresponding functional images. Individual 
functional images were analysed separately using a General Linear Model. The six conditions of interest (5 
frequencies and rest) were modeled as six regressors constructed as a boxcar function convolved with a 
canonical response function. To specifically study the  involvement of the first steps of visual information 
processing, we conducted a region-of-interest (ROI) analysis in SC, LGN and V1, defined based on our atlas. 
Contrast images were computed based on the GLM relative to each stimulus condition compared to the 
baseline (rest) across all experimental runs. For each ROI (SC, LGN and V1) we retained voxels that showed 
a significant t-value (p<0.05 family wise error (FWE) corrected). For each subject voxels of contrast images 
were averaged in each ROI.  
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Results. Following the retinotopic property of the first steps of the visual pathway,  a monocular left visual 
stimulation led to BOLD activation in the contralateral hemisphere and few contralateral activation. In Exp1., 
ROI activation was higher for the control group compared to the PD group. The most sensitive  regions were 
SC and LGN: 46% and 88% of their voxels were respectively activated in controls vs 33% and 46% in PDs. 
As shown in Figure 1, the SC response was linearly modulated by light stimulus frequency with a saturation at 
8Hz for controls. For PDs, the SC response was sharper and more rapidly saturated (5Hz). This was confirmed 
when light frequency varied between 0.5-5Hz (Exp2).  SC response seemed exacerbated in PD compared to 
controls (Figure 2). Similarly to [3] we noted that BOLD signal was attenuated in the cortex compared to 
subcortex. The effect of dopaminergique was weak. 

Discussion. This work represents the first fMRI study of frequency dependence in the visual pathway of PD 
rat model. On controls it complements the work of [3, 5] on SC activity in response to changes in light 
frequency. This response is linear in the 1-10Hz range in normal conditions. With PD, the SC response is 
enhanced and rapidly saturated. This may reflects the overcompensation to combat the inhibition exerted by 
the degeneration of the dopaminergic neurons of the Substancia Negra reticulata. The dopaminergic treatment 
(bolus) seems not to restore the SC function.  This results confirm the possible role of SC as an early 
biomarker of the disease [4]. More data are required to confirm these preliminary results.  
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Figure 1: Modulation of BOLD response function of the visual stimulation frequency in superior SC (left), 
deep SC (middle) and LGN (right). Mean on 4 rats, vertical bar: standard error, a.u.: arbitrary unit, activated 
voxels p<0.05 FWE corrected. 

Figure 2: Modulation of BOLD response function of the visual stimulation frequency in superior SC (left), 
and LGN (right) without and with Ldopa treatment. Mean on 4 rats (controls) and 2 rats (PD), vertical bar: 
standard error, a.u.: arbitrary unit, activated voxels p<0.05 FWE corrected. 
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Introduction: For tumor diagnosis, histology often remains the reference, but due to tumor 
heterogeneity, it is widely acknowledged that biopsies are not reliable. There is thus a strong interest 
in monitoring quantitatively intralesional brain tumor heterogeneity. MRI has demonstrated its ability 
to quantitatively map structural information like diffusion (ADC) as well as functional characteristics 
such as the blood volume (BVf), vessel size (VSI), the oxygen saturation of the tissue (StO2), or the 
blood brain barrier permeability. In a recent study (1), these MR parameters were analyzed 
independently from each other to demonstrate the great potential of a multiparametric MR (mpMRI) 
protocol to monitor combined radio- and chemo-therapies. However, to summarize and quantify all 
the information contained in an mpMRI protocol while preserving information about tumor 
heterogeneity, new methods to extract information need to be developed. The goal of this study is to 
demonstrate the ability of clustering analysis (2) applied to longitudinal mpMRI to summarize and 
quantify intralesional heterogeneity during tumor growth.

Methods: Animal model: The local IRB committee approved all studies. 9L tumors were implanted in 
8 rats and imaging was performed every 2 days between day 7 and day 17 post tumor implantation 
on a 4.7T Bruker system (D7, D9, D11, D13, D15 and D17; respectively). The following mpMRI 
protocol was acquired at each MR session: a T2-weighted spin echo sequence to obtain structural 
information over the whole brain, a diffusion weighted EPI sequence to map the Apparent Diffusion 
Coefficient (ADC) and multiple spin/gradient echo sequences to map T2 and T2*. A Gradient Echo 
Sampling of the FID and Spin Echo (GESFIDE) sequence was acquired pre- and post-injection of 
USPIO (133 μmol/kg). A dynamic contrast enhancing sequence was acquired using a RARE  
sequence (T1w images; n=15, 15.6 sec per image). After the acquisition of 4 images, a bolus of  
gadolinium-chelate was administered (100μmol/kg). Parametric maps: for each MR session, BVf and 
VSI maps were computed using the approach described in (3), StO2 using the method described in 
(4) and the vessel permeability maps (Perm) was calculated as the percentage of enhancement 
(voxel-wise) within 3 min post injection of gadolinium (cf. fig1-a). Co-registration: each parametric map 
of each MR session was co-registered to that acquired at  the previous time point using rigid 
registration (SPM toolbox and Matlab). ROI: tumor was manually delineated using the T2w images 
(Tumor-ROI; Red line in fig 1-a). Cluster analysis: parameter values were centered and normalized. 
Then, a Gaussian mixture distribution (Matlab function called: fitgmdist) was use to performed the 
clustering analysis of all voxels included in the tumor-ROI. The number of classes inside the mixture 
was selected by minimizing the Bayesian information criterion (BIC).

Results: Firstly, we performed the clustering  analysis 9 times using 1 to 9 classes. The optimal 
classes number, defined by the BIC was 5. Each cluster may be seen as a tissue type, as described 
Fig.1-E. The result of the clustering analysis is illustrated Fig1-A for one animal. For each of the five 
clusters (labeled K1 to K5), the evolution of the mean cluster volume over the entire population of 
tumor is presented Fig 1-B. Note that the sum of the five cluster volumes represents the whole tumor 
volume. Fig.1-C illustrates the longitudinal evolution of the 5 clusters in 2 animals with different tumor 
growth rate (slow on the top and high on the bottom). Although the cluster analysis analyzed every 
voxel independently from each other, one can see that the clustering results are spatially consistent 
at 1 time point but also over time. Indeed, clusters are spatially grouped: for example, the green cluster 
is mostly located in the center  of the tumor (Fig1-C). Our result shows a difference in cluster 
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composition between the slow and the high growth rate tumors (Fig.1-C, D). For example, in the slow 
growth rate tumor, the yellow cluster takes more and more space in the tumor overtime (up to 49% at 
D17) whereas, in the high growth rate tumor, it is the green one. The main difference between the 
yellow and the green cluster is the strong reduction in StO2 in the green cluster versus the yellow 
cluster (cf. Fig.1-E).

Conclusions: To our knowledge, it is a first study demonstrating the feasibility of performing a 
clustering analysis on mpMRI data to monitor the evolution of brain tumor heterogeneity in vivo. This 
approach highlights the type of tissue, which mostly contributes to the development of the tumor. The 
composition in tissue type could be used to refine the evaluation of chemo and radiotherapies and 
could contribute to improve tumor prognosis.
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Introduction – Autism is characterized by two distinct behavioural domains: 1) Deficits in social 
communication and interaction, and 2) repetitive behaviours and restricted interests (DSM V APA 
ref). Autism is extremely heterogeneous, with marked behavioural, genetic, and neuroanatomical 
heterogeneity found across the population. As of February 2018, the Simon’s Foundation Autism 
Research Initiative (SFARI) gene database lists 990 genes that have been linked to autism [1, 2]. Of 
those 990 genes, 267 different mouse models have been created with mutations in those genes. 
Over the past ten years, using the high throughput techniques pioneered by the Mouse Imaging 
Centre (MICe) [3], and in an effort to characterize and contrast the neuroanatomical differences 
across the autism related mouse population [4], we have created an neuroimaging dataset of 101 
different mouselines related to autism. This dataset of 3740 mice has allowed us to examine both 
the heterogeneity of autism in the mouse as well as link several of the imaging findings to what has 
been shown in the human population. 

Material and Methods – A multi-channel 7.0 Tesla MRI was used to acquire anatomical images of 
the ex vivo mouse brain, which is left in the skull, after perfusion and fixation. During the last 10 
years we have had several sequence and scanner hardware upgrades, so the sequence has 
evolved over time to become more efficient and increase our isotropic resolution.  The current 
sequence is a T2 weighted 3D fast spin echo (FSE) sequence, with a cylindrical acquisition of k-
space, and with a TR of 350 ms, and TEs of 12 ms per echo for 6 echoes, two averages, filed-of-
view of 20 x 20 x 25 mm3 and a matrix size of 504 x 504 x 630 giving an image with 0.040 mm 
isotropic voxels [5]. The current scan time of this sequence is ~14 hours and 16 brains are scanned 
in parallel during one session.  To visualize and compare any differences in the mouse brains, the 
images from all brains are registered together.  All registrations are performed with a combination of 
mni_autoreg tools [6] and advanced normalization tools (ANTs) [7, 8].  The result of the deformation 
based registration allows for the analysis of the deformations and how they relate to genotype [9], 
which can be used to assess the neuroanatomy in different mouselines voxelwise and/or using a 
pre-existing regional atlas including 199 
different regions throughout the brain [10-
13].

Results – Figure 1A shows the number of 
scans of autism related mouse models 
starting in 2008.  Notice the dramatic 
increase in those scans in the last four 
years.  Figure 1B shows the most affected 
regions across all the mouse models. 
Several of these regions including the 
striatum, hypothalamus, and cerebellum 
have all been implicated in human autism. 

Having this large a population of autism 
related mouse models has allowed us to 
start investigating population differences, 
which has shown a loss of asymmetry 
across the population (Figure 2), as well as 

Figure 1 – A) Number of mice scanned from 2008 to 
2018. B) Most affected regions across all models 
measured in absolute median effect size
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a modification in the cerebellum to 
cortex network examined with 
anatomical covariance (Figure 3).  

Of the 131 lateralized regions in 
our atlas, 53% showed a loss in 
lateral asymmetry; additionally, as 
shown in Figure 2, we found a loss 
in lateral asymmetry in the autism 
mutants in the 3 largest areas of 
asymmetry in the mouse brain. 

The deep cerebellar nuclei (DCN) 
outputs are one of the most 
affected regions across the brain 
(Figure 1B). We examined the 
projections from the DCN using anatomical 
covariance to assess the structural connectivity 
[14].  The covariance was measured between the 
DCN and the cerebellar cortex, thalamus, pontine 
nucleus, and the cortex, and was found to be 
altered only between the DCN and cortex (Figure 
3, interaction p=0.01) in the autism models when 
compared to the WT.

Discussion/Conclusion – There is never going 
to be just one mouse model that encompasses all 
of autism due to the heterogeneity of the disorder. 
Thus, the only way to truly understand the 
differences across the human population in a 
model system is through a genetically 
heterogenous animal population imaging in order 
to get a representative sample as heterogeneous 
as the human population.  

What we have shown here has only scratched the 
surface of what is possible with this large autism 
related mouse population.  We have also 
released this data publically for the first 30 
models, with more to come over time 
(https://www.braincode.ca/) 
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Figure 2 – Significant differences in the effect size between right 
and left hemispheres in the 3 largest regions of asymmetry in the 
MUT and WT groups.

Figure 3 –Schematic of the communication network 
of the cerebellum particularly the outputs of the 
DCN.  Anatomical covariance networks between 
the DCN and the Cerebellar Cortex, the Thalamus , 
the Pontine Nucleus and the Cerebral Cortex.
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Introduction: Diffusion-weighted MR spectroscopy (DW-MRS) is a unique technique to disentangle 
different pathological mechanism of brain tissue, by providing specific markers of axonal, myelin and 
glial cells damage1-2. In particular, diffusion of N-acetylaspartate + N-acetylglutamate (tNAA) has 
been suggested as a marker of intra-axonal damage3, while diffusion of choline compounds (tCho) 
gives insight onto alterations of glial cells4. Here we used the cuprizone (CPZ) mouse model to 
reproduce pathological features of multiple sclerosis (MS), such as inflammation and 
demyelination5. The aim of this study was to compare the concentrations and apparent diffusion 
coefficients (ADCs) of the different metabolites measured in CPZ mice with those of healthy control 
mice, and to correlate these measures with histological changes, in order to determine whether DW-
MRS may provide reliable biomarkers of axonal, myelin and glial cells integrity.

Material and Methods: Nine CPZ mice and 10 healthy mice were scanned with an 11.7 T Bruker 
scanner using a diffusion-weighted STE-LASER sequence6. A volume of interest (VOI) of 6x1.5x3 
mm3 was located in the body of the corpus callosum (CC) (Fig .1). Spectra were acquired with 
TE/TR = 25/5000 ms, and TM =  40 ms. Diffusion weighting was applied in three orthogonal 
directions with diffusion time = 60 ms and four b-values of 30, 2000, 4000, 6000 s/mm2 (32 
averages per condition) (Fig. 2). Unsuppressed water data were also acquired in the same VOI and 
with the same diffusion-weighting conditions for eddy current corrections. At each b-value, 
frequency and phase correction were performed on single scan before averaging, with in-house 
written routines in Matlab. Spectra quantification was performed with LCModel software. Data were 
considered reliable and selected according to Cramer-Rao lower bound (CRLB) thresholds (CRLB 
<5% for tNAA, tCr (creatine + phosphocreatine) Tau (taurine) and Glx (glutamate+glutamine), CRLB 
<10% for tCho, Ins (inositol)). ADCs were calculated for tNAA, tCho and Ins by log-linear 
regressions of the signal decay plotted as function of the b value.

Results: Metabolite concentrations were expressed as concentration ratios relative to tCr, since the 
absolute tCr concentration (calculated with respect to the water reference) did not change 
significantly between CPZ and healthy mice. Statistically significant variations were observed in 
tNAA/tCr, tCho/tCr, Tau/tCr and Glx/tCr ratios (p < 0.005) (Fig. 3). Interestingly, a statistically 
significant increase was observed in the ADCs of tCho (p < 0.005) and Ins (p < 0.01) in CPZ mice 
compared to healthy mice, whereas no significant variation was found in ADC of tNAA (fig. 4).

Discussion/Conclusion: The measured concentration ratios were in good agreement with previous 
findings7. Decrease of tNAA/tCr ratio in CPZ mice is well in line with demyelination processes 
confirmed by decreased myelin immunofluorescence. Increase of Tau/tCr ratio likely reflects the 

 - #19

50



presence of inflammation evidence by increased astrocytes and microglia immunofluorescence 
whereas decrease of Glx/tCr ratio can be correlated to a mitochondrial dysfunction. Decrease of 
tNAA/tCr concentration ratio in presence of no variation in tNAA ADC could reflect myelin damage 
but axonal integrity as confirmed by normal neurofilament immunofluorescence and by intact axonal 
diameters from electron microscopy measures. Increase of tCho and Ins ADCs could be explained 
by glial cell activation/swelling induced by inflammation processes. In conclusion, these findings 
suggest new useful DW-MRS biomarkers to highlight specific pathological microstructural 
alterations of CPZ model. The full study will incorporate correlations between DW-MRS biomarkers 
and histological data. 
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Figure 2. Examples of spectra acquired from one CPZ mouse at 
different b-values. The peaks corresponding to choline 
compounds (tCho), creatine + phosphocreatine (tCr) and N-
acetylaspartate + N-acetylglutamate (tNAA) are explicitly 
reported. 

Figure 1. Location of the VOI in CC shown on a sagittal 
view of a T2-weighted image. 

Figure 3. Mean metabolite concentration ratios relative to tCr 
represented with standard deviation. Statistically significant 
differences between CPZ and healthy mice shown with *p<0.005. 

Figure 4. Box plot of the ADCs of tNAA, tCho and Ins measured from 
all mice (red dots CPZ mice and blue dots healthy mice). Mean ADCs 
(square markers) represented with standard deviation. 
Statistically significant differences between CPZ and healthy mice 
shown with *p<0.01 and **p<0.005. 
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Introduction 

Noninvasive, widely-accessible and standardized techniques for image acquisition and analysis are 
necessary to more fully evaluate heterogeneous changes in murine tumor models during growth 
and therapy. This work presents ultrasonic techniques to evaluate tumor size, elastic properties and 
functional microvascular flow as well as analysis of whole-slide fluorescent immunohistochemical 
markers to provide invasive reference measurements of the tumors’ microstructure.  

Material and Methods 

An ectopic model of murine colorectal carcinoma (CT26) was implanted in 49 mice (BALB/c) on Day 
0. Data were acquired from randomized groups of the mice on Day 7 (n = 10), Day 10 (n = 10), Day
14 (n = 10), Day 16 (n = 9) and Day 17 (n = 10). First, each tumor was imaged in conventional B-
mode along its major, transverse and longitudinal axes and then, along the major longitudinal axis,
shear-wave elastography data (SWE; SSI, Aixplorer, SL 15-4 probe) and contrast-enhanced
ultrasound data (CEUS; Sequoia 512, 7-14 MHz probe, cadence contrast pulse sequencing) were
acquired after a syringe-pump controlled bolus injection of 40 μL of SonoVue (Bracco Suisse,
Geneva Switzerland) in the caudal vein. The ellipsoidal volume of each tumor was estimated based
on the width and thickness in the major longitudinal and transversal, B-mode planes. Quantitative
maps of the tissue stiffness were provided by the SSI system and saved in Dicom format. On the
saved SWE data, mean and standard deviation of the SWE were calculated on the region delimiting
the whole tumor on the corresponding B-mode image. CEUS sequences were saved in Dicom
format. Average contrast intensity in the vascularized zone of the tumor vs. time was fit with a
lognormal model to estimate the Area Under the Curve (AUC), Peak Enhancement (PE), Time to
Peak (TTP), Mean Transit Time (MTT), Wash In Rate (WIR) and Wash Out Rate (WOR).

After imaging, euthanasia was administered and tumors were excised and frozen with liquid 
nitrogen in an Optimal Cutting Temperature compound cube and stored at -80°C. Tumors were 
marked to conserve orientation and approximate position relative to the US imaging plane. Slices of 
the tumor were cut with a cryostat (CM3050, Leica) along the largest plan and had a thickness of 10 
μm. Whole-slice histological sections were then prepared with fluorescent immunohistochemical 
markers for reference assessment of cell nuclei (DAPI), T lymphocyte (antibody CD3 - Alexa 647), 
apoptosis (antibody anti-caspases 3 - TRITC) and vascular endothelium (antibody isolectine B4 - 
Alexa 488). These marked slices were then scanned (Axio Scan Z1, ZEISS) with a resolution of 
0.325 x 0.325 μm to provide whole-slice assessment. The regions of tumor in each histological 
section that were free of artifacts were analyzed using in-house software to estimate the percent 
area of nuclei (NU), the Number of T Lymphocyte per mm² (NTL), the percent area of Apoptosis 
(AP) and percent area of Vascular Endothelium (VE) marker in the whole section. 

Results

Parametric maps of the tumors obtained at different stages of tumor development will be presented. 
The evolution of the value of the parameters per day has been investigated using the non-
parametric Wilcoxon rank test. For the volume, there was a significant (p<0.01) difference between 
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initial (D7 and D10) and later (D14, D16, D17) days of tumor growth. The SD-SWE also showed 
significant (p < 0.01) difference between initial (D7) and later (D14, D16, D17) days, and SD-SWE 
was well correlated with tumor volume (RS = 0.65 [p < 0.001], non-parametric Spearman correlation 
coefficient). For the CEUS, four parameters (AUC, TTP, WIR and WOR) changed significantly 
between D7 and D17 and only the TTP correlated with tumor volume (RS = 0.62 [p < 0.001]). Mean 
values representing structure densities as assessed from histological data did not vary significantly 
over time and only a very modest variation was observed for the spatial SD or the nuclei between 
D10 and D17 (p< 0.05).  

Discussion/Conclusion 

No correlation between SWE and CEUS parameters was identified. Parameters related to CEUS 
and spatial variability of the SWE were sensitive to changes occurring within the tumors as they 
grew, but results did not reveal significant links between the image-based indexes and average 
microstructural parameters evaluated on histological data. Comparison between measurements 
made with the different modalities could potentially be improved by more fully sampling the tumor 
volume so that matched zones could better be identified.  

 - #20

53



INHA: Institut national d'histoire de l'art - Paris 
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